Hormone replacement therapy (HRT) in menopause is medical treatment in surgically menopausal, perimenopausal and postmenopausal women. Its goal is to mitigate discomfort caused by diminished circulating estrogen and progesterone hormones in menopause. Combination HRT is often recommended as it decreases the amount of endometrial hyperplasia and cancer associated with unopposed estrogen therapy. The main hormones involved are estrogen, progesterone and a drug called progestin. Some recent therapies include the use of androgens as well.
The 2002 Women's Health Initiative of the National Institutes of Health found disparate results for all cause mortality with hormone replacement, finding it to be lower when HRT was begun earlier, between age 50-59, but higher when begun after age 60. In older patients, there was an increased incidence of breast cancer, heart attacks and stroke, although a reduced incidence of colorectal cancer and bone fracture. Some of the WHI findings were again found in a larger national study done in the UK, known as The Million Women Study. As a result of these findings, the number of women taking hormone treatment dropped precipitously. The Women's Health Initiative recommended that women with non-surgical menopause take the lowest feasible dose of HRT for the shortest possible time to minimize associated risks.
The current indications for use from the U.S. Food and Drug Administration include short-term treatment of menopausal symptoms, such as vasomotor hot flashes or urogenital atrophy, and prevention of osteoporosis. In 2012, the United States Preventive Task Force concluded that the harmful effects of combined estrogen and progestin are likely to exceed the chronic disease prevention benefits in most women. A consensus expert opinion published by The Endocrine Society stated that when taken during perimenopause, or the initial years of menopause, hormonal therapy carries significantly fewer risks than previously published, and reduces all cause mortality in most patient scenarios. The American Association of Clinical Endocrinology also released a position statement in 2009 that approved of HRT in appropriate clinical scenarios.
Maps, Directions, and Place Reviews
Health effects
There have been a number of large scale cross sectional and cohort studies on the effects of hormone replacement in menopause, the largest being in the United States, the United Kingdom and China. Demographically, the vast majority of data available is in post-menopausal American women with concurrent pre-existing conditions, and with a mean age of over 60 years.
The North American Menopause Society (NAMS) 2016 annual meeting mentioned that hormone therapy may have more benefits than risks when it comes to females under the age of 60 years old.
In 2002 the Women's Health Initiative (WHI) was published. That study looked at the effects of hormonal replacement therapy in post-menopausal women. Both age groups had a slightly higher incidence of breast cancer, and both heart attack and stroke were increased in older patients, although not in younger participants. In fact, the use of hormone therapy in the United States has actually dropped greatly since 2002. Progesterone is the major anabolic hormone for breast tissue, and accordingly breast cancer was not increased in patients who were on estrogen therapy alone after hysterectomy. Treatment with unopposed estrogen (the supplementation of endogenous estrogens without a progestogen) is contraindicated if the uterus is still present, due its proliferative effect on the endometrium. The WHI also found a reduced incidence of colorectal cancer when estrogen and progesterone were used together, and most importantly, a reduced incidence of bone fractures. Ultimately, the study found disparate results for all cause mortality with hormone replacement, finding it to be lower when HRT was begun during ages 50-59, but higher when begun after age 60. Some findings of the WHI were reconfirmed in a larger national study done in the UK, known as The Million Women Study. Coverage of the WHI findings led to a reduction in the number of post-menopausal women on hormone replacement therapy. The authors of the study recommended that women with non-surgical menopause take the lowest feasible dose of HRT, and for the shortest possible time, to minimize risk.
The data published by the WHI suggested supplemental estrogen increased risk of venous emboli and breast cancer but was protective against osteoporosis and colorectal cancer, while the impact on cardiovascular disease was mixed. These results were later confirmed in trials from the United Kingdom, but not in more recent studies from France and China. Genetic polymorphism appears to be associated with inter-individual variability in metabolic response to HRT in postmenopausal women.
These recommendations have not held up with further data analysis, however. Subsequent findings released by the WHI showed that all cause mortality was not dramatically different between the groups receiving conjugated equine estrogen (CEE), those receiving estrogen and progesterone, and those not on HRT at all. Specifically, the relative risk for all-cause mortality was 1.04 (confidence interval 0.88-1.22) in the CEE-alone trial and 1.00 (CI, 0.83-1.19) in the estrogen plus progesterone trial. Further, in analysis pooling data from both trials, post menopausal HRT was associated with a significant reduction in mortality (RR, 0.70; CI, 0.51-0.96) among women ages 50 to 59. This would represent five fewer deaths per 1,000 women per 5 years of therapy.
However, neither the WHI nor the Million Women Study differentiated the results for different types of synthetic progesterones used. Medroxyprogesterone acetate (MPA) -- the type most commonly used in the United States--was the only one examined by the WHI, which in its analysis and conclusions extrapolated the benefits versus risks of MPA to all synthetic progesterones. This conclusion has since been challenged by several researchers as unjustified and misleading, resulting in unreasonable, unnecessary avoidance by many women of HRT for menopause. In fact, primate research indicates that the side effects of MPA may be much worse than those of other synthetic progesterones, and some human studies indicate that MPA may be responsible for negating the protective cardiac benefits of estrogen that were found for estrogen-only HRT users. Critics including Bethea note that there are now research papers showing significantly better outcomes in brain, breast, and cardiovascular parameters with estradiol plus progesterone instead of MPA and conclude that further studies are needed to know more precisely what the differences in effects are when other synthetic progesterones are used versus natural progesterone in HRT for menopause, so that women aren't needlessly discouraged from seeking HRT for menopause.
A robust Bayesian meta-analysis from 19 randomized clinical trials reported similar data with a RR of mortality of 0.73 (CI, 0.52-0.96) in women younger than age 60. However, MHT had minimal effect among those between 60 and 69 years of age (RR, 1.05; CI, 0.87-1.26) and was associated with a borderline significant increase in mortality in those between 70 and 79 years of age (RR, 1.14; CI, 0.94 -1.37; P for trend < 0.06). Similarly, in the HERS trial, with participants having a mean age of 66.7 yr, MHT did not reduce in total mortality (RR, 1.08; CI, 0.84 -1.38). A 2003 meta-analysis of 30 randomized trials of menopausal HRT in relation to mortality showed that it was associated with a nearly 40% reduction in mortality in trials in which participants had a mean age of less than 60 yr or were within 10 yr of menopause onset but was unrelated to mortality in the other trials. The findings in the younger age groups were similar to those in the observational Nurses' Health Study (RR for mortality, 0.63; CI, 0.56 - 0.70).
The beneficial potential of HRT was bolstered in a consensus expert opinion published by The Endocrine Society, which stated that when taken during perimenopause or the initial years of menopause, hormonal therapy carries significantly fewer risks than previously published and reduces all cause mortality in most patient scenarios. The American Association of Clinical Endocrinology released a position statement in 2009 that approved of HRT in the appropriate clinical scenario.
Proprietary mixtures of progestins and conjugated equine estrogens are a commonly prescribed form of HRT. As the most common and longest-prescribed type of estrogen used in HRT, most studies of HRT involve CEE. More recently developed forms of drug delivery include suppositories, subdermal implants, skin patches and gels. They have more local effect, lower doses, fewer side effects, and result in constant rather than cyclical serum hormone levels.
Management of sexual dysfunction
Hormone replacement therapy's goal is to mitigate discomfort caused by diminished circulating estrogen and progesterone hormones in menopause. In those with premature or surgically induced menopause, a combination HRT is often recommended, as it may also prolong life and may decrease a woman's chances of developing endometrial cancers associated with unopposed estrogen therapy, as well by decreasing the incidence of dementia. The main hormones involved are estrogen, progesterone and progestin. Some recent therapies include the use of androgens as well.
Data from numerous studies have consistently found that HRT leads to improvements in aspects of post-menopausal sexual dysfunction. Sexuality is a critical aspect of quality of life for the large majority of menopausal women; therefore, any features of the menopausal transition that can negatively affect a woman's sexuality have the ability to significantly alter her quality of life. The most prevalent of female sexual dysfunctions linked to menopause include lack of desire and low libido, both of which can be explained by changes in hormonal physiology.
Improvements in sexual pain, vaginal lubrication and orgasm are found to be statistically different from those using HRT. Estrogens have positive effects of mood, sexual function, target end organs, and cognitive function.
Venous and arterial coagulation
Comparisons between orally administered pill and transdermal patch suggests that when estrogens are taken orally the risks of thrombophlebitis and pulmonary embolism are increased, an effect which is not seen with topical administration. Transdermal and transvaginal administration are not subject to first pass metabolism, and so lack the anabolic effects that oral therapy has on hepatic synthesis of Vitamin K dependent clotting factors. This effect refers only to patches for post menopausal hormone replacement, which contain estradiol, not those used in oral contraceptive therapy, which contain ethinylestradiol. The latter is associated with an increased incidence of venous clot. The WHI also showed an increased incidence arterial disease, namely stroke, in patients who began HRT after the age of 65, although this effect was not significantly present in those who began therapy during their fifth decade.
Cardiovascular effects
The impact of hormone replacement on cardiovascular morbidity is a subject of much controversy in the medical literature. The reduced risk of cardiovascular diseases associated with hormone replacement therapy (HRT), reported in observational studies, has not been subsequently confirmed in randomized clinical trials. The increased risk of cardiovascular disease in the WHI was not statistically significant, and only found in the oldest women, and those who started HRT late after menopause began. The increase in risks of coronary heart disease in the treatment arm of the study varied according to age and years since onset of menopause. Women aged 50 to 59 using HRT showed a trend towards lower risk of coronary heart disease, as did women who were within five years of the onset of menopause.
A Cochrane review came to the result that in women starting hormone replacement therapy less than 10 years after menopause have a lower mortality and lower rate of coronary heart disease compared to placebo or no treatment, without any strong evidence of an effect on the risk of stroke. Those starting therapy more than 10 years after menopause have little effect on mortality and coronary heart disease, but have an increased risk of stroke. Overall, however, taking the increased risk of venous thromboembolism into account, it came to the conclusion that has hormone replacement therapy has little if any benefit for primary or secondary prevention of cardiovascular disease.
The adverse cardiovascular outcomes may only apply to oral dosing with the progestin and equine estrogens in oral systemic therapy, while topical estradiol and estriol may not produce the same risks, due to the absence of anabolic effects of hepatic vitamin K dependent clotting factors.
On a molecular level, hormone replacement therapy at the time of menopause has effects on the lipid profile. Specifically, HDL decreases, while LDL, triglycerides and lipoprotein a increase. Supplemental estrogen improves the lipid profile by reversing each of these effects. Beyond this, it improves cardiac contractility, coronary artery blood flow, metabolism of carbohydrates, and decreases platelet aggregation and plaque formation. At the molecular level HRT may promote reverse cholesterol transport (RCT) via the induction of cholesterol ABC transporters.
Endometrial effects
While combined estrogen-progesterone supplementation has been linked to an increased incidence of endometrial cancer, the specific subtype is usually stage I, or in situ, and has extremely low morbidity and mortality, and studies in American women have shown the tumor to not have propensity for growth into the myometrium or parametrial soft tissues. When seen in the context of all cause mortality, women who take estrogen and develop endometrial cancer have higher survival rates than women who do not take hormonal therapy at all, which was due to the preventive effect of HRT on hip fractures.
Unopposed estrogen can also result in endometrial hyperplasia, a precursor to endometrial cancer. The extensive use of high-dose estrogens for birth control in the 1970s is thought to have resulted in a significant increase in the incidence of this type of cancer.
Musculoskeletal effects
HRT is effective at reversing the effects of aging on muscle.
Neurologic effects
According to a 2007 presentation at an American Academy of Neurology meeting, hormone therapy taken soon after menopause may help protect against dementia, but it raises the risk of mental decline in women who do not take hormone replacement until they are older. Dementia risk was 1% in women who started HRT early, and 1.7% in women who didn't, (i.e. women who didn't take hormone replacement seem to have had--on average--a 70% higher relative risk of dementia than women who began HRT around the time of the beginning of menopause). This suggests that there may be a "critical period" during which time taking HRT may have benefits, but if HRT is initiated after that period, it will not have such benefits and may cause harm. This is consistent with research that hormone therapy improves executive and attention processes in postmenopausal women. It is also supported by research upon monkeys that were given ovariectomies to imitate the effect of menopause and then estrogen therapies. This showed replacement treated compared to nontreated monkeys had long term improved prefrontal cortex executive abilities on the Wisconsin Card Sorting Test.
Breast tissue effects
The relative risk (RR) of breast cancer varies from 1.24 in the WHI study to 1.66 in the Million Women Study, with results differing according to interval between menopause and hormone therapy and methods of hormone replacement. The WHI preliminary results in 2004 found a non-significant trend in the estrogen-alone clinical trial towards a reduced risk of breast cancer and a 2006 update concluded that use of estrogen-only HRT for 7 years does not increase the risk of breast cancer in postmenopausal women who have had a hysterectomy. The results of the WHI estrogen-alone trial suggest that the progestin used in the WHI estrogen-plus-progestin trial increased the risk for breast cancer above that associated with estrogen alone. HRT has been more strongly associated with risk of breast cancer in women with low or normal body mass index (BMI) of less than 25, but no association has been observed in women with a high body mass index.
A recent randomized controlled trial recently showed that increased breast cancer risk applied only to those women who take progesterone analogues, but not to those taking bio-identical progesterone itself, nor to hysterectomized women who take unopposed estrogen.
Some reports have not found an association of progesterone therapy and breast cancer. The absence of effect in these studies has been suggested to be due to selective prescription to overweight women, or to the very low progesterone serum levels after oral administration leading to a strong tumor inactivation rate.
For women who previously have had breast cancer, it is recommended to first consider non-hormonal options for menopausal effects, such as bisphosphonates or selective estrogen receptor modulators (SERMs) for steoporosis, cholesterol lowering agents and aspirin for cardiovascular disease and vaginal estrogen for local symptoms. Observational studies of systemic hormone replacement after breast cancer are generally reassuring. If hormone replacement is necessary after breast cancer, estrogen only therapy or estrogen therapy with an intrauterine device with progestogen may be safer options than combined systemic therapy.
Hip fractures
Estrogen prevents the activity of osteoclasts, and improves bone mineral density. Hip fracture is a leading cause of morbidity and mortality in older females, and usually does not occur in the setting of osteoporosis. Estrogen is the only medical therapy that has been shown to prevent hip fractures in women that are not osteoporotic, with efficacy superior to bisphosphonates or calcium and vitamin D supplementation.
Ovarian cancer
A 2015 meta-analysis found that hormone replacement therapy was associated with an increased risk of ovarian cancer. The authors concluded that if this association is causal, women using HRT have about one additional case of ovarian cancer per 1,000 users.
Epigenetic aging effects
HRT appears to slow down the biological/epigenetic aging rate of buccal cells but not that of blood cells . Conversely, the unmitigated loss of hormones resulting from menopause accelerates the biological aging rate of blood according to a molecular biomarker of aging known as epigenetic clock.
Sex On Menopause Video
Premature stoppage of Women's Health Initiative
Clinical medical practice changed based upon two parallel WHI studies of postmenopausal HRT. Prior studies were smaller, and many were of women who electively took hormonal therapy. The WHI studies were the first large, double-blind, placebo-controlled clinical trials of HRT in healthy, postmenopausal women.
One portion of the parallel studies followed over 16,000 women for an average of 5.2 years, half of whom took placebo, while the other half took a combination of the progestin medroxyprogesterone acetate (Provera) and conjugated equine estrogen (Premarin). The combination of hormones is referred to as Prempro.
This WHI estrogen-plus-progestin trial was stopped prematurely in 2002 because preliminary results suggested risks of combined conjugated equine estrogen and progestin exceeded their benefits. The first report on the halted WHI estrogen-plus-progestin study came out in July 2002.
The study reported statistically significant increases in rates of breast cancer, coronary heart disease, strokes and pulmonary emboli. The study also found statistically significant decreases in rates of hip fracture and colorectal cancer. "A year after the study was stopped in 2002, an article was published indicating that estrogen plus progestin also increases the risks of dementia." The conclusion of the study was that the HRT combination presented risks that outweighed its measured benefits. The results were almost universally reported as risks and problems associated with HRT in general, rather than with Prempro, the specific proprietary combination of conjugated equine estrogen and progestin studied.
After the increased clotting found in the first WHI results was reported in 2002, the number of Prempro prescriptions filled reduced by almost half. Following the WHI results, a large percentage of hormone replacement users opted out of them, which was quickly followed by a sharp drop in breast cancer rates. The decrease in breast cancer rates has continued in subsequent years. An unknown number of women started taking alternatives to Prempro, such as bioidentical hormones, though scientists have asserted that such hormones are not significantly different from Prempro.
The other portion of the parallel studies featured women who were post hysterectomy so who consequently did not need to take a progestin when using estrogen. They were given either placebo or conjugated equine estrogen alone. This group did not show the risks demonstrated in the combination hormone study, and the estrogen-only study was not halted in 2002. However, in February 2004 it, too, was halted. While there was a 23% decreased incidence of breast cancer in the estrogen-only study participants, risks of stroke and pulmonary embolism were increased slightly, predominantly in patients who began HRT over the age of 60.
Women's Health Initiative limitations and criticisms
The WHI trial was limited by low adherence, high attrition, inadequate power to detect risks for some outcomes, and evaluation of few regimens. The double blinding limited validity of study results due to its effects on patient exclusion criteria. Patients who were experiencing symptoms of the menopausal transition were excluded from the study, meaning that younger women who had only recently experienced menopause were not significantly represented. As a result, while the average age of menopause is age 51, study participants were on average 62 years of age. Demographically, the vast majority were Caucasian, and tended to be slightly overweight and former smokers.
Bioidentical hormone replacement therapy
Bioidentical hormone replacement therapy is the use of hormones that are chemically identical to those produced in a woman's body. Proponents also claim that BHRT can offer advantages beyond those typical of traditional HRT.
Some bioidentical hormone therapies are approved by the United States Food and Drug Administration (FDA). Others are provided in connection with the practices of pharmaceutical compounding and saliva testing to determine, and adjust, a woman's hormone levels. The latter two practices are not widely accepted in clinical medicine. Compounding has not demonstrated any benefits and presents risks of uncertain dosing, potency and possible contamination. In addition, saliva testing is of limited utility due to natural fluctuations in hormone levels, and lack of consensus for ideal dosage in humans.
The FDA has stated that BHRT is unsupported by medical evidence, and its administration is considered false and misleading by the agency. The FDA has expressed concern that unfounded claims like these mislead women and health care professionals. Traditional therapy has been researched to quantify these risks and benefits, and are produced by manufacturers with stringent purity and potency standards.
All testosterone prescribed in the UK is bio-identical and its use is supported by the NHS. Marketing authorisation exists for male testosterone products. NICE guideline 1.4.8 states: 'consider testosterone supplementation for menopausal women with low sexual desire if HRT alone is not effective'. The footnote adds: 'at the time of publication (November 2015), testosterone did not have a UK marketing authorisation for this indication in women. Bio-identical progesterone is used in IVF treatment and for pregnant women who are at risk of premature labour.
Compounding in the UK is a regulated activity. The MHRA regulates compounding performed under a Manufacturing Specials license and the GPhC regulates compounding performed within a pharmacy.
HRT and sexuality
Menopause is the permanent cessation of menstruation resulting from loss of ovarian follicular activity. Menopause can be divided into early and late transition periods, also known as perimenopause and postmenopause. Each stage is marked by changes in hormonal patterns, which can induce menopausal symptoms. It is possible to induce menopause prematurely by surgically removing the ovary or ovaries (oophorectomy). This is often done as a consequence of ovarian failure, such as ovarian or uterine cancers. The most common side effects of the menopausal transition are: lack of sexual desire or libido, lack of sexual arousal, and vaginal dryness. The modification of women's physiology can lead to changes in her sexual response, the development of sexual dysfunctions, and changes in her levels of sexual desire.
It is commonly perceived that once women near the end of their reproductive years and enter menopause that this equates to the end of her sexual life. However, especially since women today are living one third or more of their lives in a postmenopausal state, maintaining, if not improving, their quality of life, of which their sexuality can be a key determinant, is of importance. A recent study of sexual activities among women aged 40-69 revealed that 75% of women are sexually active at this age; this indicates that the sexual health and satisfaction of menopausal women are an aspect of sexual health and quality of life that is worthy of attention by health care professionals.
A major complaint among postmenopausal women is decreased libido, and many may seek medical consultation for this. Several hormonal changes take place during the menopausal period, including a decrease in estrogen levels and an increase in follicle-stimulating hormone. For most women, the majority of change occurs during the late perimenopausal and postmenopausal stages. Decrease in other hormones such as the sex hormone-binding globulim (SHBG) and inhibin (A and B) also take place in the postmenopausal period. Testosterone, a hormone more commonly associated with males, is also present in women. It peaks at age 30, but declines with age, so there is little variation across the lifetime and during the menopausal transition. However, in surgically induced menopause, instead of the levels of estrogens and testosterone slowly declining over time, they decline very sharply, resulting in more severe symptoms.
In menopausal women, sexual functioning can impact several dimensions of a woman's life, including her physical, psychological, and mental well-being. During the onset of menopause, sexuality can be a critical issue in determining whether one begins to experience changes in their sexual response cycle. Both age -- and menopause-related events can affect the integrity of a woman's biological systems involved in the sexual response cycle, which include hormone environment, neuro-muscular substrates, and vascular supplies. Therefore, it can be appropriate to make use of HRT, especially in women with low or declining quality of life due to sexual difficulties.
Current research that has examined the impact of menopause on women's self-reported sexual satisfaction indicates that 50.3% of women experience some sexual disturbance in one of five domains, and 33.7% experience disturbances in two of the domains. Of these were desire, orgasm, lubrication, and arousal disturbances. With regards to arousal, they found a significant negative association between age and arousal, in that as women aged they were more likely to report lower arousal scores. In the desire and orgasm domains, 38% of women reported a disturbances in their desire, and 17% reported a disturbance in their orgasm capabilities; of the 17%, 14% were premenopausal, 15.2% were postmenopausal and taking a form of HRT, and 22% were postmenopausal not on a form of HRT. Eight percent of women reported disturbances lubricating during sexual activity; 14.3% in the premenopausal group, 30% in the postmenopausal group not using a HRT, and 11.7% among those postmenopausal women using HRT. Lastly, 21% of women reported pain as a disturbance in their sexual satisfaction -- the premenopausal group at 14.3%, the postmenopausal women using HRT at 13.3% and the group with the highest rates, similarly to the other results, was the postmenopausal women not taking HRT at 34%. This study concluded that there was a significant decline in sexual function related to menopause in the pain and lubrication domains.
The maintenance and improvement of quality of life during the menopausal period is at the core of estrogen and progestin-based hormone therapy. Both HRT and estrogen replacement therapy (ERT) have been shown to enhance sexual desire in a significant percent of women; however, as with all pharmacological treatments, not all women have been responsive, especially those with preexisting sexual difficulties. ERT restores vaginal cells, pH levels, and blood flow to the vagina, all of which deterioration are associated with the onset of menopause. Dyspareunia (due to vaginal dryness) appears to be the most responsive component of menopausal women's sexuality to ERT. It also has been shown to have positive effects on the urinary tract and atrophy and may initially improve libido or sexual sensitivity. Other improvements in areas such as sexual desire, arousal, fantasies, and frequency of coitus and orgasm have also been noted. However, the effectiveness of ERT has been shown to decline in some women after long-term use. A number of studies have found that the combined effects of estrogen/androgen replacement therapy can increase a woman's motivational aspects of sexual behaviour over and above what can be achieved with estrogen therapy alone. Findings on a relatively new form of HRT called tibolone -- a synthetic steroid with estrogenic, androgenic, and progestogenic properties -- suggest that it has the ability to improve mood, libido, and somatic symptoms of surgically menopausal women to a greater degree than ERT. In various placebo-controlled studies, improvements in vasomotor symptoms, emotional reactions, sleep disturbances, somatic symptoms, and sexual desire have been observed. However, while this is and has been available in Europe for almost two decades, this has not been approved for use in North America at this point.
Effects on sexuality in transgender individuals
Hormone replacement therapy is an integral component in the medical treatment of transgender individuals, as the hormones can lead to decreasing the dichotomy between an individual's body and their gender identity. Managing long-term hormonal regimens have not been studied and are difficult to estimate because research on the long-term use of hormonal therapy has not been noted. However, it is possible to speculate the outcomes of these therapies on transgender people based on the knowledge of the current effects of gonadal hormones on sexual functioning in cisgender men and women.
Firstly, if one is to decrease testosterone in male-to-female gender transition, it is likely that sexual desire and arousal would be inhibited; alternatively, if high doses of estrogen negatively impact sexual desire, which has been found in some research with cisgender women, it is hypothesized that combining androgens with high levels of estrogen would intensify this outcome. Unfortunately, to date there haven't been any randomized clinical trials looking at the relationship between type and dose of hormone replacement therapy, so the relationship between them remains unclear. Typically, the estrogens given for male-to-female gender transition are 2-3 times higher than the recommended dose for HRT in postmenopausal women. Pharmokinetic studies indicate taking these increased doses may lead to a higher boost in plasma estradiol levels; however, the long-term side effects haven't been studied and the safety of this route is unclear.
As with any pharmacological or hormone treatment, there are potential side effects, which in the case of hormone therapy include changes in sexual functioning. These have the ability to significantly impact sexual functioning, either directly or indirectly through the various side effects, such as cerebrovascular disorders, obesity, and mood fluctuations. In addition, some research has found an onset of diabetes following feminizing hormone therapy, which impairs sexual response. Whatever route an individual and his or her doctor choose to take, it is important to consider both the medical risks of hormone therapy as well as the psychological needs of the patient.
Contraindications
Absolute contraindications
- Undiagnosed vaginal bleeding
- Severe liver disease
- Pregnancy
- Coronary artery disease (CAD)
- Well-differentiated and early endometrial cancer (once treatment for the malignancy is complete, is no longer an absolute contraindication). Progestins alone may relieve symptoms if the patient is unable to tolerate estrogens.
- Recent DVT or stroke
Relative contraindications
- Migraine headaches
- Personal history of breast cancer
- Personal history of ovarian cancer
- Venous thrombosis
- History of uterine fibroids
- Atypical ductal hyperplasia of the breast
- Active gallbladder disease (cholangitis, cholecystitis)
Adverse effects
History
The extraction of conjugated estrogens from the urine of pregnant mares led to the marketing in 1943 of the first HRT treatment, Premarin. From that time until 1975, estrogen was administered without supplemental progesterone or progestin. A study from Kaiser Permanente by Dr. Harry Ziel demonstrated that in the absence of progesterone, patients were at increased risk of endometrial cancer with unopposed estrogen therapy. After this, progestin was supplemented in women who had not received surgical hysterectomy, to reduce the incidence of endometrial hyperplasia and cancer. This was followed by the Women's Health Initiative (WHI) in 2002. However, the arm of the WHI receiving combined Estrogen and Progesterone therapy was closed prematurely by its Data Monitoring Committee (DMC) due to perceived health risks, although the trial arm was stopped only a full year after the data suggesting increased risk became manifest. In 2004, the arm of the WHI in which post-hysterectomy patients were being treated with estrogen alone was also closed by the DMC.
Administration and formulations
HRT is available in various forms. It generally provides low dosages of one or more estrogens, and often also provides either progesterone or a chemical analogue, called a progestin. Testosterone may also be included. Some HRT treatments such as Livial contain Tibolone, an anabolic steroid, that has the properties of oestrogen, progestogen and testosterone. Such treatments aren't usually recommended to women who are perimenopausal or for at least 12 months after the last menstrual period.
In women who have had a hysterectomy, an estrogen is usually given without any progesterone, a therapy referred to as "unopposed estrogen therapy". HRT may be delivered to the body via patches, tablets, creams, troches, IUDs, vaginal rings, gels or, more rarely, by injection. For example, vaginally administered estrogens include those given by intravaginal tablets, creams and rings, and can have more effect on atrophic vaginitis with fewer systemic effects than estrogens delivered by other means.
Dosage is often varied cyclically to more closely mimic the ovarian hormone cycle, with estrogens taken daily and progesterone or progestins taken for about two weeks every month or two; a method called "cyclic HRT" or "sequentially combined HRT" (abbreviated scHRT). An alternate method, a constant dosage with both types of hormones taken daily, is called "continuous combined HRT" or ccHRT, and is a more recent innovation. Sometimes an androgen, generally testosterone, is added to treat diminished libido. It may also treat reduced energy and help reduce osteoporosis after menopause.
HRT is often given as a short-term relief (often one or two years, usually less than five) from menopausal symptoms (hot flushes, irregular menstruation, fat redistribution, etc.). Younger women with premature ovarian failure or surgical menopause may use hormone replacement therapy for many years, until the age that natural menopause would be expected to occur.
Formulations of estradiol include:
- Oral tablets, commonly given in amounts of 1 to 2 milligrams of estradiol per day, with trade names including Progynon.
- Estrogen patches
- Estrogen transdermal gels
In addition, there are many formulations of estradiol combined with one of various progestins, such as norethisterone (in Activelle, Novofem and Cliovelle), levonorgestrel, medroxyprogesterone (in Indivina), dienogest or drospirenone.
Source of the article : Wikipedia
EmoticonEmoticon